Summary of Product Characteristics

1 NAME OF THE MEDICINAL PRODUCT

Klacid IV 500mg Powder for Concentrate for Solution for Infusion

2 QUALITATIVE AND QUANTITATIVE COMPOSITION

Each vial contains 500 mg clarithromycin (as lactobionate).

When reconstituted and diluted as directed, the final diluted solution contains approximately 1.9mg/ml of Clarithromycin.

Excipient with known effect:

The quantity of sodium per vial is 0.273 mg.

For the full list of excipients, see section 6.1.

3 PHARMACEUTICAL FORM

Powder for Concentrate for Solution for Infusion

A white to off-white caked, lyophilised powder.

4 CLINICAL PARTICULARS

4.1 Therapeutic indications

Klacid IV is indicated in adults and children aged 12 years and older whenever parenteral therapy is required for treatment of infections caused by susceptible organisms in the following conditions;

- Lower respiratory tract infections for example, acute and chronic bronchitis, and pneumonia (see section 4.1 and 5.1 regarding Sensitivity Testing).
- Upper respiratory tract infections for example, sinusitis and pharyngitis.
- Skin and soft tissue infectionsfor example, folliculitis, cellulitis, erysipelas (see section 4.1 and 5.1 regarding Sensitivity Testing).

Consideration should be given to official guidance on the appropriate use of antibacterial agents.

4.2 Posology and method of administration

For intravenous administration only.

Intravenous therapy may be given for 2 to 5 days in the very ill patient and should be changed to oral clarithromycin therapy whenever possible as determined by the physician.

Adults: The recommended dosage of Klacid IV in adults 18 years of age or older is 1.0 gram daily, divided into two 500mg doses, appropriately diluted as described below.

Children younger than 12 years: There are insufficient data to recommend a dosage regimen for use of the clarithromycin IV formulation in patients less than 12 years of age (see Klacid Paediatric Suspension). In adolescents (12-18 years) dosing is as for adults.

Elderly: As for adults.

10 April 2024 CRN00F67Y Page 1 of 15

Renal Impairment: In patients with renal impairment with creatinine clearance less than 30ml/min, the dosage of clarithromycin should be reduced by one half of the normal recommended dose.

Immunocompromised patients: No data are available for IV use, but oral clarithromycin has been used in HIV patients to treat disseminated or localised infections (*M. avium, M. intracellulare, M. chelonae, M. fortuitum, M. kansasii*) at 1000mg/day in two divided doses.

Recommended administration:

Klacid IV should be administered as an IV infusion over 60 minutes using a solution concentration of about 1.9mg/ml. Clarithromycin should not be given as a bolus or an intramuscular injection.

Preparation for use: For instructions on the preparation of the suspension, see section 6.6.

4.3 Contraindications

Hypersensitivity to macrolide antibiotic drugs or any of the excipients (listed in section 6.1).

Concomitant administration of clarithromycin and any of the following drugs is contraindicated: astemizole, cisapride, domperidone, pimozide or terfenadine as this may result in QT prolongation and cardiac arrhythmias, including ventricular tachycardia, ventricular fibrillation, and torsades de pointes (see section 4.4 and 4.5).

Concomitant administration with ticagrelor, ivabradine or ranolazine is contraindicated.

Concomitant administration of clarithromycin and ergot alkaloids (e.g. ergotamine or dihydroergotamine) is contraindicated, as this may result in ergot toxicity (see section 4.5).

Concomitant administration of clarithromycin and lomitapide is contraindicated (see section 4.5).

Clarithromycin should not be given to patients with history of QT prolongation (congenital or acquired QT prolongation) or ventricular cardiac arrhythmia, including torsades de pointes (see sections 4.4 and 4.5).

Clarithromycin should not be used concomitantly with HMG-CoA reductase inhibitors (statins) that are extensively metabolised by CYP3A4, (lovastatin or simvastatin), due to the increased risk of myopathy, including rhabdomyolysis (see section 4.4).

As with other strong CYP3A4 inhibitors, clarithromycin should not be used in patients taking colchicine (see sections 4.4 and 4.5).

Concomitant administration of clarithromycin and oral midazolam is contraindicated (see section 4.5).

Clarithromycin should not be given to patients with electrolyte disturbances (hypokalaemia or hypomagnesaemia due to the risk of prolongation of the QT interval).

Clarithromycin should not be used in patients who suffer from severe hepatic failure in combination with renal impairment.

4.4 Special warnings and precautions for use

The physician should not prescribe clarithromycin to pregnant women without carefully weighing the benefits against risk, particularly during the first three months of pregnancy (see section 4.6).

Clarithromycin is principally metabolised by the liver. Therefore, caution should be exercised in administering the antibiotic to patients with impaired hepatic function. Caution should also be exercised when administering clarithromycin to patients with moderate to severe renal impairment.

10 April 2024 CRN00F67Y Page 2 of 15

Hepatic dysfunction, including increased liver enzymes, and hepatocellular and/or cholestatic hepatitis, with or without jaundice, has been reported with clarithromycin. This hepatic dysfunction may be severe and is usually reversible. In some instances, hepatic failure with fatal outcome has been reported and generally has been associated with serious underlying diseases and/or concomitant medications. Discontinue clarithromycin immediately if signs and symptoms of hepatitis occur, such as anorexia, jaundice, dark urine, pruritus, or tender abdomen.

Cases of fatal hepatic failure (see section 4.8) have been reported. Some patients may have had pre-existing hepatic disease or may have been taking other hepatotoxic medicinal products. Patients should be advised to stop treatment and contact their doctor if signs and symptoms of hepatic disease develop, such as anorexia, jaundice, dark urine, pruritus, or tender abdomen.

Pseudomembranous colitis has been reported with nearly all antibacterial agents, including macrolides, and may range in severity from mild to life-threatening. *Clostridioides difficile* associated diarrhoea (CDAD) has been reported with use of nearly all antibacterial agents including clarithromycin, and may range in severity from mild diarrhoea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon, which may lead to overgrowth of C. *difficile*. CDAD must be considered in all patients who present with diarrhoea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. Therefore, discontinuation of clarithromycin therapy should be considered regardless of the indication. Microbial testing should be performed and adequate treatment initiated. Drugs inhibiting peristalsis should be avoided.

Colchicine

There have been post-marketing reports of colchicine toxicity with concomitant use of clarithromycin and colchicine, especially in the elderly, some of which occurred in patients with renal insufficiency. Deaths have been reported in some such patients (see section 4.5). Concomitant administration of clarithromycin and colchicine is contraindicated (see section 4.3).

Caution is advised regarding concomitant administration of clarithromycin and triazolobenzodiazepines, such as triazolam, and intravenous or oromucosal midazolam (see section 4.5).

Cardiovascular Events

Prologation of the QT interval, reflecting effects on cardiac repolarisation imparting a risk of developing cardiac arrhythmia and torsade de pointes, have been seen in patients treated with macrolides including clarithromycin (see section 4.8). Due to increased risk of QT prolongation and ventricular arrhythmias (including torsade de pointes), the use of clarithromycin is contraindicated: in patients taking any of astemizole, cisapride, domperidone, pimozide and terfenadine; in patients with electrolyte disturbances such as hypomagnesaemia or hypokalaemia; and in patients with a history of QT prolongation or ventricular cardiac arrhythmia (see section 4.3).

Furthermore, clarithromycin should be used with caution in the following:

- Patients with coronary artery disease, severe cardiac insufficiency, conduction disturbances or clinically relevant bradycardia;
- Patients concomitantly taking other medicinal products associated with QT prolongation other than those which are contraindicated

Epidemiological studies investigating the risk of adverse cardiovascular outcomes with macrolides have shown variable results. Some observational studies have identified a rare short-term risk of arrhythmia, myocardial infarction and cardiovascular mortality associated with macrolides including clarithromycin. Consideration of these findings should be balanced with treatment benefits when prescribing clarithromycin.

<u>Pneumonia</u>: In view of the emerging resistance of *Streptococcus pneumoniae* to macrolides, it is important that sensitivity testing be performed when prescribing clarithromycin for community-acquired pneumonia. In hospital-acquired pneumonia, clarithromycin should be used in combination with additional appropriate antibiotics.

Skin and soft tissue infections of mild to moderate severity: These infections are most often caused by Staphylococcus aureus and Streptococcus pyogenes, both of which may be resistant to macrolides. Therefore, it is important that sensitivity testing be performed. In cases where beta-lactam antibiotics cannot be used (e.g. allergy), other antibiotics, such as clindamycin, may be the drug of first choice. Currently, macrolides are only considered to play a role in some skin and soft tissue infections, such as those caused by Corynebacterium minutissimum, acne vulgaris, and erysipelas and in situations where penicillin treatment cannot be used.

10 April 2024 CRN00F67Y Page 3 of 15

In the event of severe acute hypersensitivity reactions, such as anaphylaxis, severe cutaneous adverse reactions (SCAR) (e.g. acute generalized exanthematous pustulosis (AGEP), Stevens-Johnson syndrome, toxic epidermal necrolysis and drug rash with eosinophilia and systemic symptoms (DRESS)), clarithromycin therapy should be discontinued immediately and appropriate treatment should be urgently initiated.

Clarithromycin should be used with caution when administered concurrently with medications that induce the cytochrome CYP3A4 enzyme (see section 4.5).

<u>HMG-CoA reductase inhibitors (statins)</u>: Concomitant use of clarithromycin with lovastatin or simvastatin is contraindicated (see section 4.3

Caution should be exercised when prescribing clarithromycin with other statins. Rhabdomyolysis has been reported in patients taking clarithromycin and statins. Patients should be monitored for signs and symptoms of myopathy. In situations where the concomitant use of clarithromycin with statins cannot be avoided, it is recommended to prescribe the lowest registered dose of the statin. Use of a statin that is not dependent on CYP3A metabolism (e.g. fluvastatin) can be considered (see section 4.5).

<u>Oral hypoglycaemic agents/insulin</u>: The concomitant use of clarithromycin and oral hypoglycaemic agents (such as sulphonylurias) and/or insulin can result in significant hypoglycaemia. Careful monitoring of glucose is recommended (see section 4.5).

<u>Oral anticoagulants</u>: There is a risk of serious haemorrhage and significant elevations in International Normalised Ratio (INR) and prothrombin time when clarithromycin is co-administered with warfarin (see section 4.5). INR and prothrombin times should be frequently monitored while patients are receiving clarithromycin and oral anticoagulants concurrently.

Caution should be exercised when clarithromycin is co-administered with direct acting oral anticoagulants such as dabigatran, rivaroxaban, apixaban and edoxaban, particularly to patients at high risk of bleeding (see section 4.5).

Use of any antimicrobial therapy, such as clarithromycin, to treat *H. pylori* infectionmay select for drug-resistant organisms.

Long-term use may, as with other antibiotics, result in colonisation with increased numbers of non-susceptible bacteria and fungi. If superinfections occur, appropriate therapy should be instituted.

Attention should be paid to the possibility of cross-resistance between clarithromycin and other macrolide drugs, as well as lincomycin and clindamycin.

This medicinal product contains less than 1 mmol sodium (23mg) per vial, i.e. that is to say essentially 'sodium free'.

4.5 Interaction with other medicinal products and other forms of interaction

The use of the following drugs is strictly contraindicated due to the potential for severe drug interaction effects:

Astemizole, cisapride, domperidone, pimozide and terfenadine

Elevated cisapride levels have been reported in patients receiving clarithromycin and cisapride concomitantly. This may result in QT prolongation and cardiac arrhythmias including ventricular tachycardia, ventricular fibrillation and torsades de pointes. Similar effects have been observed in patients, taking clarithromycin and pimozide concomitantly (see section 4.3).

Macrolides have been reported to alter the metabolism of terfenadine resulting in increased levels of terfenadine which has occasionally been associated with cardiac arrhythmias, such as QT prolongation, ventricular tachycardia, ventricular fibrillation and torsades de pointes (see section 4.3). In one study in 14 healthy volunteers, the concomitant administration of clarithromycin and terfenadine resulted in a 2 to 3-fold increase in the serum level of the acid metabolite of terfenadine and in prolongation of the QT interval which did not lead to any clinically detectable effect. Similar effects have been observed with concomitant administration of astemizole and other macrolides.

Ergotamine/dihydroergotamine

Post-marketing reports indicate that co-administration of clarithromycin with ergotamine or dihydroergotamine has been associated with acute ergot toxicity characterised by vasospasm, and ischaemia of the extremities and other tissues including

10 April 2024 CRN00F67Y Page 4 of 15

the central nervous system. Concomitant administration of clarithromycin and these medicinal products is contraindicated (see section 4.3).

Oral Midazolam

When midazolam was co-administered with clarithromycin tablets (500mg twice daily), midazolam AUC was increased 7-fold after oral administration of midazolam. Concomitant administration of oral midazolam and clarithromycin is contraindicated (see section 4.3).

HMG-CoA Reductase Inhibitors (statins)

Concomitant use of clarithromycin with lovastatin or simvastatin is contraindicated (see section 4.3) as these statins are extensively metabolized by CYP3A4 and concomitant treatment with clarithromycin increases their plasma concentration, which increases the risk of myopathy, including rhabdomyolysis. Reports of rhabdomyolysis have been received for patients taking clarithromycin concomitantly with these statins. If treatment with clarithromycin cannot be avoided, therapy with lovastatin or simvastatin must be suspended during the course of treatment.

Caution should be exercised when prescribing clarithromycin with statins. In situations where the concomitant use of clarithromycin with statins cannot be avoided, it is recommended to prescribe the lowest registered dose of the statin. Use of a statin that is not dependent on CYP3A metabolism (e.g. fluvastatin) can be considered. Patients should be monitored for signs and symptoms of myopathy.

Effects of Other Medicinal Products on Clarithromycin

Drugs that are inducers of CYP3A (e.g. rifampicin, phenytoin, carbamazepine, phenobarbital, St John's wort) may induce the metabolism of clarithromycin. This may result in sub-therapeutic levels of clarithromycin leading to reduced efficacy. Furthermore, it might be necessary to monitor the plasma levels of the CYP3A inducer, which could be increased owing to the inhibition of CYP3A by clarithromycin (see also the relevant product information for the CYP3A4 inducer administered). Concomitant administration of rifabutin and clarithromycin resulted in an increase in rifabutin, and decrease in clarithromycin serum levels together with an increased risk of uveitis.

The following drugs are known or suspected to affect circulating concentrations of clarithromycin; clarithromycin dosage adjustment or consideration of alternative treatments may be required.

Efavirenz, nevirapine, rifampicin, rifabutin and rifapentine

Strong inducers of the cytochrome P450 metabolism system such as efavirenz, nevirapine, rifampicin, rifabutin, and rifapentine may accelerate the metabolism of clarithromycin and thus lower the plasma levels of clarithromycin, while increasing those of 14-OH-clarithromycin, a metabolite that is also microbiologically active. Since the microbiological activities of clarithromycin and 14-OH-clarithromycin are different for different bacteria, the intended therapeutic effect could be impaired during concomitant administration of clarithromycin and enzyme inducers.

Etravirine

Clarithromycin exposure was decreased by etravirine; however, concentrations of the active metabolite, 14-OH-clarithromycin, were increased. Because 14-OH-clarithromycin has reduced activity against *Mycobacterium avium* complex (MAC), overall activity against this pathogen may be altered; therefore alternatives to clarithromycin should be considered for the treatment of MAC.

<u>Fluconazole</u>

Concomitant administration of fluconazole 200 mg daily and clarithromycin 500 mg twice daily to 21 healthy volunteers led to increases in the mean steady-state minimum clarithromycin concentration (C_{min}) and area under the curve (AUC) of 33% and 18% respectively. Steady state concentrations of the active metabolite 14-OH-clarithromycin were not significantly affected by concomitant administration of fluconazole. No clarithromycin dose adjustment is necessary.

Ritonavir

A pharmacokinetic study demonstrated that the concomitant administration of ritonavir 200 mg every eight hours and clarithromycin 500 mg every 12 hours resulted in a marked inhibition of the metabolism of clarithromycin. The clarithromycin C_{max} increased by 31%, C_{min} increased 182% and AUC increased by 77% with concomitant administration of ritonavir. An essentially complete inhibition of the formation of 14-OH-clarithromycin was noted. Because of the large therapeutic window for clarithromycin, no dosage reduction should be necessary in patients with normal renal function. However, for patients with renal impairment, the following dosage adjustments should be considered: For patients with creatinine clearance 30 to 60 mL/min the dose of clarithromycin should be reduced by 50%. For patients with creatinine clearance <30 mL/min the dose of

10 April 2024 CRN00F67Y Page 5 of 15

clarithromycin should be decreased by 75%. Doses of clarithromycin greater than 1000 mg/day should not be coadministered with ritonavir.

Similar dose adjustments should be considered in patients with reduced renal function when ritonavir is used as a pharmacokinetic enhancer with other HIV protease inhibitors including atazanavir and saquinavir (see section below, Bi-directional drug interactions).

Effect of Clarithromycin on Other Medicinal Products

CY3A4-based interactions

Co-administration of clarithromycin, which is known to inhibit CYP3A, and a drug primarily metabolised by CYP3A may be associated with elevations in drug concentrations that could increase or prolong both therapeutic and adverse effects of the concomitant drug.

The use of clarithromycin is contraindicated in patients receiving the CYP3A substrates astemizole, cisapride, domperidone, pimozide and terfenadine due to the risk of QT prolongation and cardiac arrhythmias, including ventricular tachycardia, ventricular fibrillation, and torsades de pointes (see sections 4.3 and 4.4).

The use of clarithromycin is also contraindicated with ergot alkaloids, oral midazolam, HMG CoA reductase inhibitors metabolised mainly by CYP3A4 (e.g. lovastatin and simvastatin), colchicine, ticagrelor, ivabradine and ranolazine (see section 4.3).

Concomitant administration of clarithromycin with lomitapide is contraindicated due to the potential for markedly increased transaminases.

Caution is required if clarithromycin is co-administered with other drugs known to be CYP3A enzyme substrates, especially if the CYP3A substrate has a narrow safety margin (e.g. carbamazepine) and/or the substrate is extensively metabolized by this enzyme. Dosage adjustments may be considered, and when possible, serum concentrations of drugs primarily metabolized by CYP3A should be monitored closely in patients concurrently receiving clarithromycin. Drugs or drug classes that are known or suspected to be metabolized by the same CYP3A isozyme include (but this list is not comprehensive) alprazolam, carbamazepine, cilostazole, ciclosporin, disopyramide, ibrutinib, methylprednisolone, midazolam (intravenous), omeprazole, oral anticoagulants (e.g. warfarin, rivaroxaban, apixaban), atypical antipsychotics (e.g. quetiapine), quinidine, rifabutin, sildenafil, sirolimus, tacrolimus, triazolam and vinblastine.

Drugs interacting by similar mechanisms through other isozymes within the cytochrome P450 system include phenytoin, theophylline and valproate.

Antiarrhythmics

There have been postmarketing reports of torsades de pointes occurring with the concurrent use of clarithromycin and quinidine or disopyramide. Electrocardiograms should be monitored for QT prolongation during co-administration of clarithromycin with these drugs. Serum levels of quinidine and disopyramide should be monitored during clarithromycin therapy.

There have been post marketing reports of hypoglycemia with the concomitant administration of clarithromycin and disopyramide. Therefore blood glucose levels should be monitored during concomitant administration of clarithromycin and disopyramide.

Hydroxychloroquine and chloroquine

Clarithromycin should be used with caution in patients receiving these medicines known to prolong the QT interval due to the potential to induce cardiac arrhythmia and serious adverse cardiovascular events.

Oral hypoglycemic agents/Insulin

With certain hypoglycemic drugs such as nateglinide and repaglinide, inhibition of CYP3A enzyme by clarithromycin may be involved and could cause hypoglycaemia when used concomitantly. Careful monitoring of glucose is recommended.

Direct acting oral anticoagulants (DOACs)

The DOACs dabigatran and edoxaban are substrates for the efflux transporter P-gp. Rivaroxaban and apixaban are metabolised via CYP3A4 and are also substrates for P-gp. Caution should be exercised when clarithromycin is co-administered with these agents particularly to patients at high risk of bleeding (see section 4.4).

Corticosteroids

10 April 2024 CRN00F67Y Page 6 of 15

Caution should be exercised in concomitant use of clarithromycin with systemic and inhaled corticosteroids that are primarily metabolised by CYP3A due to the potential for increased systemic exposure to corticosteroids. If concomitant use occurs, patients should be closely monitored for systemic corticosteroid undesirable effects.

Omeprazole

Clarithromycin (500 mg every 8 hours) was given in combination with omeprazole (40 mg daily) to healthy adult subjects. The steady-state plasma concentrations of omeprazole were increased (C_{max} , AUC_{0-24} , and $t_{1/2}$ increased by 30%, 89%, and 34%, respectively), by the concomitant administration of clarithromycin. The mean 24-hour gastric pH value was 5.2 when omeprazole was administered alone and 5.7 when omeprazole was co-administered with clarithromycin.

Sildenafil, tadalafil and vardenafil

Each of these phosphodiesterase inhibitors is metabolised, at least in part, by CYP3A, and CYP3A may be inhibited by concomitantly administered clarithromycin. Co-administration of clarithromycin with sildenafil, tadalafil or vardenafil would likely result in increased phosphodiesterase inhibitor exposure. Reduction of sildenafil, tadalafil and vardenafil dosages should be considered when these drugs are co-administered with clarithromycin.

Theophylline, carbamazepine

Results of clinical studies indicate that there was a modest but statistically significant ($p \le 0.05$) increase of circulating theophylline or carbamazepine levels when either of these drugs were administered concomitantly with clarithromycin. Dose reduction may need to be considered.

Tolterodin

The primary route of metabolism for tolterodine is via the 2D6 isoform of cytochrome P450 (CYP2D6). However, in a subset of the population devoid of CYP2D6, the identified pathway of metabolism is via CYP3A. In this population subset, inhibition of CYP3A results in significantly higher serum concentrations of tolterodine. A reduction in tolterodine dosage may be necessary in the presence of CYP3A inhibitors, such as clarithromycin in the CYP2D6 poor metaboliser population.

Triazolobenzodiazepines (e.g. alprazolam, midazolam, triazolam)

When midazolam was co-administered with clarithromycin tablets (500 mg twice daily), midazolam AUC was increased 2.7-fold after intravenous administration of midazolam. If intravenous midazolam is co-administered with clarithromycin, the patient must be closely monitored to allow dose adjustment. A drug-drug interaction study between oromucosal midazolam and clarithromycin has not been conducted. However drug delivery of midazolam via oromucosal route, which could bypass pre-systemic elimination of the drug, will likely result in a similar interaction to that observed after intravenous midazolam rather than oral administration. The same precautions should also apply to other benzodiazepines that are metabolised by CYP3A, including triazolam and alprazolam. For benzodiazepines which are not dependent on CYP3A for their elimination (temazepam, nitrazepam, lorazepam), a clinically important interaction with clarithromycin is unlikely.

There have been post-marketing reports of drug interactions and central nervous system (CNS) effects (e.g. somnolence and confusion) with the concomitant use of clarithromycin and triazolam. Monitoring the patient for increased CNS pharmacological effects is suggested.

Other drug interactions

Colchicine

Colchicine is a substrate for both CYP3A and the efflux transporter, P-glycoprotein (Pgp). Clarithromycin and other macrolides are known to inhibit CYP3A and Pgp. When clarithromycin and colchicine are administered together, inhibition of Pgp and/or CYP3A by clarithromycin may lead to increased exposure to colchicine. Concomitant use of clarithromycin and colchicine is contraindicated (see sections 4.3 and 4.4).

<u>Digoxin</u>

Digoxin is thought to be a substrate for the efflux transporter, P-glycoprotein (Pgp). Clarithromycin is known to inhibit Pgp. When clarithromycin and digoxin are administered together, inhibition of Pgp by clarithromycin may lead to increased exposure to digoxin. Elevated digoxin serum concentrations in patients receiving clarithromycin and digoxin concomitantly have also been reported in post marketing surveillance. Some patients have shown clinical signs consistent with digoxin toxicity, including potentially fatal arrhythmias. Serum digoxin concentrations should be carefully monitored while patients are receiving digoxin and clarithromycin simultaneously.

Zidovudine

10 April 2024 CRN00F67Y Page 7 of 15

Simultaneous oral administration of clarithromycin tablets and zidovudine to HIV-infected adult patients may result in decreased steady-state zidovudine concentrations. Because clarithromycin appears to interfere with the absorption of simultaneously administered oral zidovudine, this interaction can be largely avoided by staggering the doses of clarithromycin and zidovudine to allow for a 4-hour interval between each medication. This interaction does not appear to occur in paediatric HIV-infected patients taking clarithromycin suspension with zidovudine or dideoxyinosine. This interaction is unlikely when clarithromycin is administered via intravenous infusion.

Phenytoin and valproate

There have been spontaneous or published reports of interactions of CYP3A inhibitors, including clarithromycin with drugs not thought to be metabolised by CYP3A (e.g. phenytoin and valproate). Serum level determinations are recommended for these drugs when administered concomitantly with clarithromycin. Increased serum levels have been reported.

Bi-directional drug interactions

<u>Atazanavir</u>

Both clarithromycin and atazanavir are substrates and inhibitors of CYP3A, and there is evidence of a bi-directional drug interaction. Co-administration of clarithromycin (500 mg twice daily) with atazanavir (400 mg once daily) resulted in a 2-fold increase in exposure to clarithromycin and a 70% decrease in exposure to 14-OH-clarithromycin, with a 28% increase in the AUC of atazanavir. Because of the large therapeutic window for clarithromycin, no dosage reduction should be necessary in patients with normal renal function. For patients with moderate renal function (creatinine clearance 30 to 60 mL/min), the dose of clarithromycin should be decreased by 50%. For patients with creatinine clearance <30 mL/min, the dose of clarithromycin should be decreased by 75% using an appropriate clarithromycin formulation. Doses of clarithromycin greater than 1000 mg per day should not be co-administered with protease inhibitors.

Calcium Channel Blockers

Caution is advised regarding the concomitant administration of clarithromycin and calcium channel blockers metabolized by CYP3A4 (e.g. verapamil, amlodipine, diltiazem) due to the risk of hypotension. Plasma concentrations of clarithromycin as well as calcium channel blockers may increase due to the interaction. Hypotension, bradyarrhythmias and lactic acidosis have been observed in patients taking clarithromycin and verapamil concomitantly.

<u>Itraconazole</u>

Both clarithromycin and itraconazole are substrates and inhibitors of CYP3A, leading to a bi-directional drug interaction. Clarithromycin may increase the plasma levels of itraconazole, while itraconazole may increase the plasma levels of clarithromycin. Patients taking itraconazole and clarithromycin concomitantly should be monitored closely for signs or symptoms of increased or prolonged pharmacologic effect.

<u>Saquinavir</u>

Both clarithromycin and saquinavir are substrates and inhibitors of CYP3A, and there is evidence of a bi-directional drug interaction. Concomitant administration of clarithromycin (500 mg twice daily) and saquinavir (soft gelatin capsules, 1200 mg three times daily) to 12 healthy volunteers resulted in steady-state AUC and C_{max} values of saquinavir which were 177% and 187% higher than those seen with saquinavir alone. Clarithromycin AUC and C_{max} values were approximately 40% higher than those seen with clarithromycin alone. No dose adjustment is required when the two drugs are co-administered for a limited time at the doses/formulations studied. Observations from drug interaction studies using the soft gelatin capsule formulation may not be representative of the effects seen using the saquinavir hard gelatin capsule. Observations from drug interaction studies performed with saquinavir alone may not be representative of the effects seen with saquinavir/ritonavir therapy. When saquinavir is co-administered with ritonavir, consideration should be given to the potential effects of ritonavir on clarithromycin (see section 4.5).

4.6 Fertility, pregnancy and lactation

Pregnancy

The safety of clarithromycin during pregnancy has not been established. Based on variable results obtained from animal studies and experience in humans, the possibility of adverse effects on embyofoetal development cannot be excluded. Some observational studies evaluating exposure to clarithromycin during the first and second trimester have reported an increased risk of miscarriage compared to no antibiotic use or other antibiotic use during the same period. The available epidemiological studies on the risk of major congenital malformations with use of macrolides including clarithromycin during pregnancy provide conflicting results. Therefore, use during pregnancy is not advised without carefully weighing the benefits against risk.

10 April 2024 CRN00F67Y Page 8 of 15

Breast-feeding

The safety of clarithromycin use during breast-feeding of infants has not been established. Clarithromycin is excreted into human breast milk in small amounts. It has been estimated that an exclusively breastfed infant would receive about 1.7% of the maternal weight-adjusted dose of clarithromycin.

Fertility

There is no data available on the effect of clarithromycin on fertility in humans. In the rat, fertility studies have not shown any evidence of harmful effects.

4.7 Effects on ability to drive and use machines

There are no data on the effect of clarithromycin on the ability to drive or use machines. The potential for dizziness, vertigo, confusion and disorientation, which may occur with the medication, should be taken into account before patients drive or use machines.

4.8 Undesirable effects

a. Summary of the safety profile

The most frequent and common adverse reactions related to clarithromycin therapy for both adult and paediatric populations are abdominal pain, diarrhoea, nausea, vomiting and taste perversion. These adverse reactions are usually mild in intensity and are consistent with the known safety profile of macrolide antibiotics. (see section b. of section 4.8)

There was no significant difference in the incidence of these gastrointestinal adverse reactions during clinical trials between the patient population with or without preexisting mycobacterial infections.

b. Tabulated summary of adverse reactions

The following table displays adverse reactions reported in clinical trials and from post-marketing experience with clarithromycin immediate-release tablets, granules for oral suspension, powder for solution for injection, extended-release tablets and modified-release tablets.

The reactions considered at least possibly related to clarithromycin are displayed by system organ class and frequency using the following convention: very common ($\geq 1/10$), common ($\geq 1/100$ to < 1/10), uncommon ($\geq 1/1,000$ to < 1/100) and not known (adverse reactions from post-marketing experience; cannot be estimated from the available data). Within each frequency grouping, frequency adverse reactions are presented in order of decreasing seriousness when the seriousness could be assessed.

			data)	
Infections and infestations		Cellulitis ¹ , candidiasis, gastroenteritis ² ,infection ³ , vaginal infection	Pseudomembranous colitis, erysipelas	
Blood and lymphatic system		Leukopenia, neutropenia ⁴ , thrombocythemia ³ , eosinophilia ⁴	Agranulocytosis, thrombocytopenia	
Immune system disorders		Anaphylactoid reaction ¹ , hypersensitivity	Anaphylactic reaction, angioedema	
Metabolism and nutrition disorders		Anorexia, decreased appetite		
Psychiatric	Insomnia	Anxiety,	Psychotic disorder, confusional state,	

10 April 2024 CRN00F67Y Page 9 of 15

Health Products Regulatory Authority					
disorders			nervousness ³ ,	depersonalisation, depression, disorientation, hallucination, abnormal dreams, mania	
Nervous system disorders		Dysgeusia, headache	Loss of consciousness ¹ , dyskinesia ¹ , dizziness, somnolence, tremor	Convulsion, ageusia, parosmia, anosmia, paraesthesia	
Ear and labyrinth disorders			Vertigo, hearing impaired, tinnitus	Deafness	
Cardiac disorders			Cardiac arrest ¹ , atrial fibrillation ¹ , electrocardiogram QT prolonged, extrasystoles ¹ , palpitations	Torsades de pointes, ventricular tachycardia, ventricular fibrillation	
Vascular disorders		Vasodilation ¹		Haemorrhage	
Respiratory, thoracic and mediastinal disorder			Asthma ¹ , epistaxis ² , pulmonary embolism ¹		
Gastrointestinal disorders		Diarrhoea, vomiting, dyspepsia, nausea, abdominal pain	Oesophagitis ¹ , gastrooesophageal reflux disease ² , gastritis, proctalgia ² , stomatitis, glossitis, abdominal distension ⁴ , constipation, dry mouth, eructation, flatulence	Pancreatitis acute, tongue discolouration, tooth discolouration	
Hepatobiliary disorders		Liver function test abnormal	Cholestasis ⁴ , hepatitis ⁴ , alanine aminotransferase increased, aspartate aminotransferase increased, gamma-glutamyltra nsferase increased ⁴	Hepatic failure, jaundice hepatocellular	
Skin and subcutaneous tissue disorders		Rash, hyperhidrosis	Dermatitis bullous ¹ , pruritus, urticaria, rash maculo-papular ³	Severe cutaneous adverse reactions (SCAR) (e.g. acute generalised exanthematous pustulosis (AGEP), Stevens-Johnson syndrome, toxic epidermal necrolysis, drug rash with eosinophilia and systemic symptoms (DRESS)), acne	
Musculoskeletal and connective tissue disorders			Muscle spasms ³ , musculoskeletal stiffness ¹ , myalgia ²	Rhabdomyolysis ^{2,**} , myopathy	
Renal and urinary disorders			Blood creatinine increased ¹ , blood urea increased ¹	Renal failure, nephritis interstitial	
General disorders and administration site conditions	Injection site phlebitis ¹	Injection site pain ¹ , injection site inflammation ¹	Malaise ⁴ , pyrexia ³ , asthenia, chest pain ⁴ , chills ⁴ , fatigue ⁴		
Investigations			Albumin globulin ratio abnormal ¹ ,	International normalised ratio increased, prothrombin time prolonged, urine color	

10 April 2024

CRN00F67Y

Page 10 of 15

	Health Products Regulatory Authority				
				blood alkaline	
				phosphatase	
				increased ⁴ ,	abnarmal
				blood lactate	abnormal
			dehydroge	dehydrogenase	
				increased ⁴	

^{*}Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Patient exposure is estimated to be greater than 1 billion patient treatment days for clarithromycin.

c. Description of selected adverse reactions

Injection site phlebitis, injection site pain, vessel puncture site pain, and injection site inflammation are specific to the clarithromycin intravenous formulation.

In some of the reports of rhabdomyolysis, clarithromycin was administered concomitantly with statins, fibrates, colchicine or allopurinol (see section 4.3 and 4.4).

There have been post-marketing reports of drug interactions and central nervous system (CNS) effects (e.g. somnolence and confusion) with the concomitant use of clarithromycin and triazolam. Monitoring the patient for increased CNS pharmacological effects is suggested (see section 4.5).

There have been rare reports of clarithromycin extended-release tablets in the stool, many of which have occurred in patients with anatomic (including ileostomy or colostomy) or functional gastrointestinal disorders with shortened GI transit times. In several reports, tablet residues have occurred in the context of diarrhoea. It is recommended that patients who experience tablet residue in the stool and no improvement in their condition should be switched to a different clarithromycin formulation (e.g. suspension) or another antibiotic.

Special population: Adverse Reactions in Immunocompromised Patients (see section e).

d. Paediatric populations

Clinical trials have been conducted using clarithromycin paediatric suspension in children 6 months to 12 years of age. Therefore, children under 12 years of age should use clarithromycin paediatric suspension.

Frequency, type and severity of adverse reactions in children are expected to be the same as in adults.

e. Other special populations

Immunocompromised patients

Although there are currently no data regarding use of clarithromycin IV in this patient population, data are available regarding the use of oral clarithromycin in HIV-infected patients.

In AIDS and other immunocompromised patients treated with the higher doses of clarithromycin over long periods of time for mycobacterial infections, it was often difficult to distinguish adverse events possibly associated with clarithromycin administration from underlying signs of Human Immunodeficiency Virus (HIV) disease or intercurrent illness.

In adult patients, the most frequently reported adverse events by patients treated with total daily doses of 1000mg and 2000mg of clarithromycin were: nausea, vomiting, taste perversion, abdominal pain, diarrhoea, rash, flatulence, headache, constipation, hearing disturbance, Serum Glutamic Oxaloacetic Transaminase (SGOT) and Serum Glutamic Pyruvate

10 April 2024 CRN00F67Y Page 11 of 15

^{**} In some reports of rhabdomyolysis, clarithromycin was administered concomitantly with other drugs known to be associated with rhabdomyolysis (such as statins, fibrates, colchicine or allopurinol).

¹ ADRs reported only for the Powder for Cencentrate for Solution for Infusion formulation

²ADRs reported only for the Extended-Release Tablets formulation

³ ADRs reported only for the Granules for Oral Suspension formulation

⁴ ADRs reported only for the Immediate-Release Tablets formulation

Transaminase (SGPT) elevations. Additional low-frequency events included dyspnoea, insomnia and dry mouth. The incidences were comparable for patients treated with 1000mg and 2000mg, but were generally about 3 to 4 times as frequent for those patients who received total daily doses of 4000mg of clarithromycin.

In these immunocompromised patients evaluations of laboratory values were made by analysing those values outside the seriously abnormal level (i.e. the extreme high or low limit) for the specified test. On the basis of these criteria, about 2% to 3% of those patients who received 1000mg or 2000mg of clarithromycin daily had seriously abnormal elevated levels of SGOT and SGPT, and abnormally low white blood cell and platelet counts. A lower percentage of patients in these two dosage groups also had elevated Blood Urea Nitrogen levels. Slightly higher incidences of abnormal values were noted for patients who received 4000mg daily for all parameters except White Blood Cell.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via HPRA Pharmacovigilance, Website: www.hpra.ie

4.9 Overdose

Reports indicate that the ingestion of large amounts of clarithromycin can be expected to produce gastro-intestinal symptoms. One patient who had a history of bipolar disorder ingested eight grams of clarithromycin and showed altered mental status, paranoid behaviour, hypokalaemia and hypoxaemia.

Adverse reactions accompanying overdosage should be treated by the prompt elimination of unabsorbed drug and supportive measures. As with other macrolides, clarithromycin serum levels are not expected to be appreciably affected by haemodialysis or peritoneal dialysis.

In the case overdosage, clarithromycin IV (powder for solution for injection) should be discontinued and all other appropriate supportive measures should be instituted.

5 PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antibacterial for systemic use, macrolide

ATC-Code: J01FA09

Clarithromycin is a semi-synthetic derivative of erythromycin A. It exerts its antibacterial action by binding to the 50S ribosomal sub-unit of susceptible bacteria and suppresses protein synthesis. Clarithromycin demonstrates excellent *in vitro* activity against standard strains of clinical isolates. It is highly potent against a wide variety of aerobic and anaerobic gram positive and negative organisms. The minimum inhibitory concentrations (MICs) of clarithromycin are generally two-fold lower than the MICs of erythromycin.

The 14-(R)-hydroxy metabolite of clarithromycin, formed in man by first pass metabolism also has anti-microbial activity. The MICs of this metabolite are equal to or two-fold higher than the MICs of the parent compound except for *Haemophilus influenzae* where the 14-hydroxy metabolite is two-fold more active than the parent compound. Clarithromycin is also bactericidal against several bacterial strains.

Clarithromycin is usually active against the following organisms in vitro. Please see below for table of MIC breakpoints.

Gram-positive Bacteria: *Staphylococcus aureus* (methicillin susceptible); *Streptococcus pyogenes* (Group A beta-haemolytic streptococci); alpha-haemolytic streptococcus (viridans group); *Streptococcus (Diplococcus) pneumoniae*; *Streptococcus agalactiae*; *Listeria monocytogenes*.

Gram-negative Bacteria: Haemophilus influenzae, Haemophilus parainfluenzae, Moraxella (Branhamella) catarrhalis, Neisseria gonorrhoeae; Legionella pneumophila, Bordetella pertussis, Helicobacter pylori; Campylobacter jejuni.

Mycoplasma: Mycoplasma pneumoniae; Ureaplasma urealyticum.

10 April 2024 CRN00F67Y Page 12 of 15

Other Organisms: Chlamydia trachomatis; Mycobacterium avium; Mycobacterium leprae; Chlamydia pneumoniae.

Anaerobes: Macrolide-susceptible *Bacteriodes fragilis; Clostridium perfringens; Peptococcus* species; *Peptostreptococcus* species; *Propionibacterium acnes.*

Clarithromycin has bactericidal activity against several bacterial strains. These organisms include *Haemophilus influenzae*, *Streptococcus pneumoniae*, *Streptococcus pyogenes*, *Streptococcus agalactiae*, *Morazella (Brahamella) catarrhalis*, *Neisseria gonorrhoeae*, *Helicobacter pylori* and *Campylobacter species*.

The activity of clarithromycin against *H. pylori* is greater at neutral pH than at acid pH.

Breakpoints

The following breakpoints for clarithromycin, separating susceptible organisms from resistant organisms, have been established by the European Committee for Antimicrobial Susceptibility Testing (EUCAST).

Breakpoints (MIC, μg/	eakpoints (MIC, μg/ml)				
Microorganism	Susceptible (≤)	Resistant (>)			
Streptococcus spp.	0.25 mcg/ml	0.5 mcg/ml			
Staphylococcus spp.	1 mcg/ml	2 mcg/ml			
Haemophilus spp.	1 mcg/ml	32 mcg/ml			
Moraxella catarrhalis	0.25 mcg/ml	0.5 mcg/ml			

Clarithromycin is used for the eradication of H. pylori; minimum inhibitory concentration (MIC) \leq 0.25 mcg/ml which has been established as the susceptible breakpoint by the Clinical and Laboratory Standards Institute (CLSI).

5.2 Pharmacokinetic properties

The microbiologically active metabolite 14-hydroxyclarithromycin is formed by first pass metabolism as indicated by lower biovailability of the metabolite following IV administration. Following IV administration the blood levels of clarithromycin achieved are well in excess of the MIC ₉₀s for the common pathogens and the levels of 14-hydroxyclarithromycin exceed the necessary concentrations for important pathogens, e.g. *H. influenzae*.

The pharmacokinetics of clarithromycin and the 14-hydroxy metabolite are non-linear; steady state is achieved by day 3 of IV dosing. Following a single 500mg IV dose over 60 minutes, about 33% clarithromycin and 11% 14-hydroxyclarithromycin is excreted in the urine at 24 hours.

Klacid IV does not contain tartrazine or other azo dyes, lactose or gluten.

5.3 Preclinical safety data

There are no pre-clinical data of relevance to the prescriber which are additional to that already included in other sections of the SPC.

6 PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Lactobionic acid Sodium hydroxide (for pH-adjustment)

6.2 Incompatibilities

10 April 2024 CRN00F67Y Page 13 of 15

This medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.

6.3 Shelf life

Unopened: 3 years.

Storage conditions of the reconstituted and diluted medicinal product:

For the initial solution chemical and physical in-use stability has been demonstrated for 48 hours at 5°C and for 24 hours at 25°C.

From a microbiological point of view, the reconstituted product should be used immediately. If not used immediately, in-use storage times and conditions prior to use are the responsibility of the user and would normally not be longer than 24 hours at 2 to 8°C, unless reconstitution /dilution has taken place in controlled and validated aseptic conditions.

For the final solution chemical and physical in-use stability has been demonstrated for 48 hours at 5°C and for 6 hours at 25°C. From a microbiological point of view, the final diluted product should be used immediately. If not used immediately, in-use storage times and conditions prior to use are the responsibility of the user and would normally not be longer than 24 hours at 2 to 8°C, unless reconstitution /dilution has taken place in controlled and validated aseptic conditions.

6.4 Special precautions for storage

Unopened: Do not store above 30°C. Keep the vial in the outer carton in order to protect from light.

For storage conditions after reconstitution and dilution of the medicinal product, see section 6.3.

6.5 Nature and contents of container

The container is a 30ml Ph. Eur Type I flint glass tubing vial with a 20mm grey halo-butyl lyophilisation stopper **or 15ml Ph.Eur. Type I flint glass tubing vial with a grey bromobutyl lyophilisation stopper**. There is a 20mm flip-off lacquer coated aluminium and polypropylene or equivalent cap. Both vial sizes contain the same quanity of Clarithromycin.

Not all vial sizes may be marketed.

6.6 Special precautions for disposal of a used medicinal product or waste materials derived from such medicinal product and other handling of the product

Klacid IV should be administered as an IV infusion over 60 minutes, using a solution concentration of about 1.9mg/ml. Clarithromycin should not be given as a bolus or an intramuscular injection.

Dilution:

Both dilution steps should be complete before use.

Prepare all solutions using aseptic techniques.

The final solution for infusion is prepared as follows:

- 1. Prepare the initial solution of clarithromycin I.V. by adding 10 ml of Sterile Water for Injection to the 500 mg vial. Use only Sterile Water for Injection, as other diluents may cause precipitation during reconstitution. Do not use diluents containing preservatives or inorganic salts. Note: When the product is reconstituted as directed above, the resulting solution contains an effective antimicrobial preservative; each ml contains 50 mg clarithromycin. For storage conditions after reconstitution of the medicinal product, see section 6.3.
- 2. The reconstituted product (500 mg in 10 ml Water for Injection) should be added to a minimum of 250 ml of one of the following diluents before administration:
- 5% dextrose in Lactated Ringer's Solution,
- 5% dextrose,
- Lactated Ringer's,
- 5% dextrose in 0.3% sodium chloride,
- Normosol-M in 5% dextrose,

10 April 2024 CRN00F67Y Page 14 of 15

- Normosol-R in 5% dextrose,
- 5% dextrose in 0.45% sodium chloride,
- 0.9% sodium chloride.

For storage conditions after dilution of the medicinal product, see section 6.3.

Compatibility with other IV additives has not been established.

IMPORTANT: BOTH DILUENT STEPS SHOULD BE COMPLETED BEFORE USE.

Once reconstituted, the white to off-white caked, lyophilised powder forms a clear solution.

The concentration of the final reconstituted solution is approximately 1.9mg/ml.

For single use only. Discard any unused contents.

7 MARKETING AUTHORISATION HOLDER

Viatris Healthcare Limited Damastown Industrial Park Mulhuddart Dublin 15 Dublin Ireland

8 MARKETING AUTHORISATION NUMBER

PA23355/013/003

9 DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 10 November 1994

Date of last renewal: 10 November 2009

10 DATE OF REVISION OF THE TEXT

April 2024

10 April 2024 CRN00F67Y Page 15 of 15