Fish Vaccination
- A brief overview

Dr Marian McLoughlin,
Aquatic Veterinary Services
Belfast
Presentation Plan

- Rationale for fish vaccination
- What diseases do we want to control?
- Ideal fish vaccines
- Types of vaccine available
- Route of vaccine administration
- Current vaccines and their efficacy and recommended vaccination programmes
- Adverse reactions
Basis of Fish vaccination

• Fish have a functional immune system similar to mammals (innate & adaptive)

• Major differences with other vertebrates is that their metabolism and immune response is temperature dependent.

• An ideal vaccine should be:
 – safe
 – immunogenic
 – produce similar protection to natural challenge
 – Should prevent or limit effects of disease
Basis of Fish vaccination

Pathogens (bacteria, viruses…)

- Infection
- Diseased
 - Treatment
 - Healthy
 - Mortality

Vaccination

Innate & adaptive immune response

Resistance to infection
Atlantic salmon production (MT) by country in 2003
Vaccine doses (millions) used in the salmon industry in 2002

- Norway: 160
- Chile: 140
- UK: 80
- Canada: 40
- Faroe Islands: 20
- Ireland: 10
- USA: 10
Norwegian Salmon Production, Use of Pure Antibiotics and the Effect of Vaccines

- Vibriosis vaccine
- Furunculosis vaccine
- Oil-based Furunc. vaccine
- Combination vaccines

Graph showing the use of antibiotics (MT) and salmon production (1,000 MT) from 1981 to 2004.
Rationale for fish vaccination

• **Vaccination** is the best method to increase survival rate and profitability in aquaculture when used in combination with several factors which are necessary to guarantee the highest possible survival rate
 • Good nutrition
 • High-quality fingerlings
 • Good farming and husbandry practices
 • Health management
Important considerations for fish vaccination

• Species (Salmon, Cod, Sea bass)
• Status of the immune system
• Production cycle and life history
• What diseases do you want to control?
• When do these diseases occur?
• Farming technology (Handling, mechanisation)
• Environment (temperature, salinity)
• Stress factors, nutrition and cost benefit
Atlantic Salmon Production Cycle

Freshwater phase 9-15 months

- Hatching
- Eyed eggs
- Spawning
- Alevins
- Fry
- Fingerlings
- Smolts

Seawater phase 13 – 24 months

- Broodstock Selection & Rearing
- Vaccination
- Juveniles
- Grilse
- Salmon

Much longer than a chicken or a pig
Causes of Infectious Diseases in Aquaculture

- Bacteria: 54.9%
- Viruses: 22.6%
- Parasites: 19.4%
- Fungi: 3.1%
Globally Important Bacterial Pathogens in Salmonid Aquaculture

- *Listonella (Vibrio) anguillarum*
- *Vibrio salmonicida*
- *Moritella viscosa*
- *Aeromonas salmonicida*
- *Aeromonas hydrophila*
- *Yersinia ruckeri*
- *Renibacterium salmonis*
- *Lactococcus/Streptococcus sp.*
- *Piscirickettsia salmonis*
Globally Important Viral Pathogens in Salmonid Aquaculture

- Infectious Pancreatic Necrosis (IPN)
- Salmon Pancreas Disease (SPD)
- Sleeping Disease of Trout (SD)
- Infectious Salmon Anaemia (ISA)
- Viral Nervous Necrosis (VNN)
- Infectious Haematopoietic Necrosis (IHN)
The Ideal Fish Vaccine?

- Sustained immunity and protection
- Early mass application
- Efficacious for a broad number of species
- Safe
- Cheap and cost effective
- Easily produced
- Stable
- Will not interfere with diagnosis
- Easily licensed
Fish Vaccine Types

Dead vaccines

- Inactivated virus or bacterial antigens
- Sub-unit vaccines
- Recombinant vaccines

Live vaccines

- Attenuated live
- Gene deleted live
- DNA
What Fish vaccines are Used?

• Most commonly used antigens in fish vaccines to date are inactivated or killed bacterial and viral
• Most successful use has been against furunculosis (Aeromonas salmonicida) in salmon
• Several inactivated antigens now present in most commonly used salmon vaccines, i.e. multivalent
• Recombinant sub unit vaccine used for IPN
• DNA vaccines for IHN and VHS in development
Commercially available registered inactivated antigens world-wide

- A. salmonicida
- V. salmonicida
- V. viscosa
- V. ordalii
- V. anguillarum
- Y. ruckerii
- R. salmoninarum
- F. psychrophilum
- F. columnarae
- P. salmonis
- L. garvieae
- S. iniae
- P. piscicida
- E. ictaluri
- IPN
- PD
- IHN
- VHS
- ISA*
- Iridovirus - Japan

Source: Sommerset, Krossoy and Frost, 2005
Number of licensed fish vaccines

<table>
<thead>
<tr>
<th>Country</th>
<th>No Vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway</td>
<td>1</td>
</tr>
<tr>
<td>Chile</td>
<td>9</td>
</tr>
<tr>
<td>USA</td>
<td>~30</td>
</tr>
<tr>
<td>Japan</td>
<td>13</td>
</tr>
<tr>
<td>UK</td>
<td>6</td>
</tr>
<tr>
<td>Canada</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>No Vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greece</td>
<td>6</td>
</tr>
<tr>
<td>Italy</td>
<td>6</td>
</tr>
<tr>
<td>France</td>
<td>1</td>
</tr>
<tr>
<td>Spain</td>
<td>4</td>
</tr>
<tr>
<td>Faroes</td>
<td>16</td>
</tr>
<tr>
<td>Ireland</td>
<td>2</td>
</tr>
</tbody>
</table>

Source: Galligani et al 2005
Summary of international survey on vaccine efficacy

<table>
<thead>
<tr>
<th>Disease</th>
<th>Very Good</th>
<th>Good</th>
<th>OK</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical vibriosis</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Coldwater Vibrio</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter ulcers</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm water Vibrio</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furunculosis</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Yersiniosis</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pasteurellosis</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Hastein, Gudding & Evensen 2005
Vaccination Methods

- **Injection vaccination**
 - Intraperitoneal (adjuvanted or not)
 - Intramuscular (DNA)

- **Immersion vaccination**
 - Bath method
 - Dip method
 - Spray vaccination

Cartoons courtesy of Cor Lamers
Wageningen University
Vaccination Methods

- Spray vaccination
 A variant of immersion
 Could be used in larger fish where injection not possible

- Oral (active) vaccination
 Micro-encapsulation method
 Bio-encapsulation method
Fish vaccination process

- Fish are transported in pipes from the rearing tanks to an anaesthetic bath.
- The anaesthetized fish are injected by the vaccination team.
Injection vaccination – by hand
Injection vaccination - by machine
Fish immersion vaccination
Oral vaccination
Advantages & disadvantages of immersion vaccination

• Suitable for mass vaccination of all sizes of fish
• Reduced stress for fish
• Lower labour costs
• Less risk to vaccination team
• Major disadvantages are the large amount of vaccine required and lower level of protection and duration of immunity
Advantages & disadvantages of Injection vaccination

- Most common method of vaccine delivery in fish
- Highly efficient in generating both humoral (antibody) and cellular cytotoxic response
- Unsuitable for small fish
- Needs sophisticated machinery or large skilled workforce
- Significant handling stress and risk of post vaccination fungal infections
- Local reactions
Advantages & disadvantages of Oral vaccination

• Vaccine mixed with feed
• Easiest method for mass vaccination of all sizes of fish
• Saves labour and avoids stress
• Large quantities of antigen required
• Requires all fish to be feeding
• Protection generally weak and of short duration
Choice of Application method

• Determined by
 - Vaccination window
 - Size of fish
 - Duration of protection required
 - Type of pathogen
 - Type of immune reaction required
 - Single versus multivalent product
 - Cost of vaccine and smolts
Comparison of fish vaccination methods

<table>
<thead>
<tr>
<th></th>
<th>Immersion</th>
<th>Injection</th>
<th>Oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Stress</td>
<td>±</td>
<td>-</td>
<td>+++</td>
</tr>
<tr>
<td>Costs</td>
<td>++</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Efficacy</td>
<td>++</td>
<td>+++</td>
<td>±</td>
</tr>
<tr>
<td>Duration</td>
<td>+</td>
<td>+++</td>
<td>±</td>
</tr>
</tbody>
</table>
What is a local reaction in a Fish?

- Adhesions and melanisation
- Inflammatory response producing local and/or diffuse peritonitis with adhesions in internal organs and abdominal wall.
- Invasion of fibroblasts, macrophages and lymphocytes
- Large number of melanomacrophages.
- Can result in multiple granulomata
What factors influence development of local reactions?

- Adjuvants
- Antigens
- Formation of vaccine
- Dose volume
- Photo period
- Temperature @ vaccination
- Size of fish @ vaccination
- Hygiene @ vaccination
- Interaction of all or any of above
Consequences of severe local reactions

- Reduced growth
- Increased feed conversion ratio
- Condemnation at processing
- Slows up manual & automatic gutting process
- Welfare issue
Measurement of Local Reactions

- Speilberg or Midtlyng score (Midtlyng et al. 1996)
- Subjective measurement
- Requires training and standardization and checking
- Score range: 0 = no reaction 6 = very severe
- < 2 – satisfactory
- 3 – gives cause for concern
- >4 – if 10% are ≥ 4 could be considered an adverse reaction. 20-25% growth reduction
- Distribution of scores more important than mean.
- Examine a minimum of 30 fish per group at least 3 times during field production cycle
Measurement of Local Reactions

- Spielberg or Mtidlyng score (Mtidlyng et al 1996..)
- Subjective measurement
- Requires training and standardization and checking
- Score range: 0 = no reaction 6 = very severe
- < 2 – satisfactory
- 3 – gives cause for concern
- >4 – if 10% are > or = 4 could be considered an adverse reaction. 20-25% growth reduction
- Distribution of scores more important than mean.
- Examine a minimum of 30 fish per group at least 3 times during field production cycle
Spielberg Scale for adhesions (0-6)

- **0** = no visible lesions
- **1** = very slight adhesions most frequently around the injection site
- **2** = minor adhesions which may connect the colon spleen and/or caudal pyloric caecae to the abdominal wall. Broken down easily
- **3** = Adhesions extending to anterior or cranial abdomen including the liver and/or gonads
Speilberg Scale for adhesions (0-6)

- **4** = more extensive lesions involving all organs and abdominal wall & may be damage to the peritoneum
- **5** = Organs more or less fused together and with numerous adhesions to the body wall which are difficult to remove. Usually visible melanisation of the peritoneum
- **6** = Similar to 5 but more pronounced with extensive melanin deposition on various organs and in the muscle. Evisceration results in damage & downgrading
Safety: Melanisation Scale 0-3

- **0** = No melanin
- **1** = Small amount on viscera
- **2** = Highly visible melanin and/or slight pigmentation of abdominal wall which is easily removed
- **3** = Melanisation of abdominal wall and fillet - removal results in damage and downgrading.
Local reaction evaluation

- **Subjective**
- **Granulomata will increase score even if not widespread**
- **Melanisation of fillet unacceptable**
- **Severe lesions in anterior/cranial region may be serious for potential broodstock**
- **Position and nature of adhesions and melanin deposits is important to note**

Ref FVS Monograph on Local reactions
Histogram of Local Reactions

Average Speilberg score

Weeks post vaccination

Test
Control

Weeks: 10, 20, 34, 52
Scores: 0, 0.5, 1, 1.5, 2
Local Reaction Distribution Chart
Satisfactory profile

Weeks post vaccination

<table>
<thead>
<tr>
<th>Speilberg score distribution</th>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 weeks</td>
<td>84</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16 weeks</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>51 weeks</td>
<td>54</td>
<td>19</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>88 weeks</td>
<td>29</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Local Reaction Distribution Chart

Unsatisfactory profile

Speilberg score distribution

Weeks post vaccination
Local reaction profiles of different vaccines
Mean "Speilberg scores" from vaccination until harvest

Weeks post vaccination

Average "Speilberg score"
The ideal vaccination strategy

• Oral vaccines of high efficacy which could be given in or on the food as required
• Immersion vaccine → injection → oral boosters as required.
• Currently salmonid industry relies on a single injection of a multivalent vaccine (6-7 antigens)
• Danger of antigen overload & antigenic competition
• New vaccines and vaccine strategy required
Other important aspects of a vaccination strategy

- **Size** of fish at vaccination
 - Smaller the fish, ↑ risk of higher local reactions

- **Temperature** @ vaccination
 - Higher the temperature, ↑ risk of higher local reactions

- **Onset of immunity** is temperature dependent

- **Adjuvants**
 - Various have been tried but oil based give best protection

- **Type and number of antigens**
 - Monovalent vs multivalent
Future vaccine developments may benefit from:

- Increased knowledge of the fish immune system
- Increased knowledge of pathogen and virulence mechanisms
- Novel expression systems
- Marker (live) vaccines
- Improved DNA vaccines
- Passive immunisation
- Improved adjuvants
- Oral delivery systems
- Immunostimulants
Fish vaccination Le FIN

• Aquaculture needs effective and safe vaccines to be sustainable
• Fish vaccinology is still a young and maturing science but amazing advances can be made
• These need to be translated into licensed products
• Hopefully this will mean lots of work for vaccine assessors!
Thank you for your Attention

Any Questions?

Acknowledgement:
William Enright
Intervet International Ltd
for use of many of the figures and photographs